

予測医療への展開を目指した 患者個別の血管モデリングと 血流シミュレーション

大島 まり

http://oshimalab.iis.u-tokyo.ac.jp

<u>0 5</u>0 um

アウトライン

• はじめに -血行力学と循環器系疾患について ●シミュレーションの事例 -Image-Based Modeling & Simulation (患者個別に対応できるモデリングとシミュレーション) -実際の症例を使ったシミュレーションの例 ・血管の形状モデリング ・全身循環を考慮したステント留置術の術前・術後のシミュレーション •4D医用画像からの血管壁の材料特性のin vivo同定 脳動脈瘤における血流と血管壁の 相互作用を考慮したシミュレーション ・
頸動脈部における血流とLDLの濃度輸送のシミュレーション ●今後の展望

研究の紹介 一血液の流れの研究

血液の流れが重要な役割を果たしている

アテローム性動脈硬化症

動脈壁が肥厚により硬化する血管病変

- **頸動脈分岐部**など,特定の場所に発生しやすい
- 動脈壁がLDL(Low Density Lipoprotein :低密度リポ蛋白質)
 の沈着などにより肥厚し, 粥状(アテローム性)のプラークを 形成する⇒狭窄の原因(<u>脳梗塞, 心筋梗塞</u>などの要因)
- 動脈硬化症により狭窄が生じた場合、
 ステント手術が行われる。しかし、
 手術後に脳出血や再狭窄を起こす場合があり、
 が求められている

内頸動脈へのステント手術

脳動脈瘤とくも膜下出血について

- 動脈瘤とは
 - 比較的太い脳動脈にできる嚢状の瘤(約10mm)
- 破裂によりクモ膜出血
 - 未破裂動脈瘤:人口の 3~5%
 - 発生したもののうち約 0.5-1.0%が破裂
 - <u>手術による後遺症の危険性は数%-5.0%</u> クリッピング <u>コイリング</u>

医療分野でのコンピュータ・シミュレーションの応用

●医用画像との組み合わせによる新しい展開

・非侵襲であり、倫理的な問題がない ・壁面せん断応力などの力学情報の取得 ・予測・手術計画に最適

→より高度・安全・安心な予防,治療, 診断方法の研究開発を迅速に推進

●発展できる柔軟なシステム

新しい医学・生理学的な知見を継続的な組み 込みが可能.時代とともに技術が「成長」

→マルチスケール・フィジックスな 現象に対応可能

個別の患者に対応できる治療・診断システム

血流による力学的刺激

- の循環器系疾患の発症メカニズム
 - 血流が血管壁におよぼす
 - ・壁面せん断応力(ずり刺激)
 - · 圧刺激(血圧)
 - ・伸展刺激(血管壁の伸縮) と病変との関わりが指摘されている^{*1,2}

- 血管最内面に存在する内皮細胞
 - ・直接血流による刺激を受ける
 - ・特に壁面せん断応力の影響を受ける*3
 - ・機能変化(物質の取り込み量、等)が変化する*4

流体(血行)力学的観点からの病変の要因解明のアプローチ

*1 Ross,Nature,1993 *2 Caro et al, Nature, 1969 *3飯田ら, バイオエンジニアリング講演会講演論文集, 2007 *4工藤ら, 機論, 1998

血流による力が細胞に影響を与える

Physiologic Arterial Hemodynamic Shear Stress $(\tau_s > 15 \text{ dyne/cm}^2)$

循環器系シミュレーション 一患者個別に対応できるモデリングとシミュレーションー

循環器系統合シミュレーション

・MRI/CTなどの診断機器の医用画像に 基づき(<u>Image based</u>)、実際の血管形状 を作成

 ・患者個人個人の血管形状を考慮した (Patient specific)血流解析

・ミリオーダの太い動脈から、毛細血管の 効果まで含めた<u>マルチスケール</u>な解析

・脈動に伴う血管壁の移動、血流による血 管内物質の壁面透過など脳血管における <u>マルチフィジックス</u>の解析

血管病変のメカニズム解明

脳動脈破裂のリスク予想、より効果的な 予防・治療法の開発、・・・

脳の中の血流

脳動脈瘤 (10mm程度の嚢状の瘤)

ウィリス動脈輪(主要な脳血管網)2

MC-Modeling画面

GUIによるInteractiveな操作

脳血管網(Willis動脈輪)の3次元モデル

さらに現実に近いin vivo simulationを目指して 閉ループの循環器系のなかでの特定部位の計算 1D m-scale mm-scale 20 音界条件 © 1999 www.daj.ne.jp 循環器系モデル MC Aneurysm Inflow 特定部位形状モデル 局所の解析であっても全身循環の影響を考慮する必要あり 流量分配の変化 ⇔ 力学的刺激の変化

解析手法(1次元とO次元解析)

1D-0D 解析手法

<1D Simulation>

- Pressure waves due to wall dynamics are considered
- Governing Eqs.

Mass conservation Eq.

 $\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial z} = 0$

Momentum conservation Eq.

$$\frac{\partial Q}{\partial t} + \frac{\partial}{\partial z} \left(\frac{Q^2}{A}\right) + \frac{A}{\rho} \frac{\partial P}{\partial z} + 8\pi \nu \frac{Q}{A} = 0$$

Relationship bt.pressure-area

$$P - P_0 = \frac{Eh_0}{r_0(1 - \sigma^2)} \left(\sqrt{\frac{A}{A_0}} - 1 \right)$$

- Discretization method 2 stpes Lax-Wendroff method

$$\Delta t = 5.0 \times 10^{-5} \text{ s}$$

Young modulus varies with an age

<0D Simulation>

- •capilary, vein, heart are molded
- Lumped parameter model
- Governing Eq.

$$C\frac{dP_i}{dt} + Q_{i+1} - Q_i = 0$$

$$L\frac{dQ_{i+1}}{dt} = -(P_{i+1} - P_i) - RQ_{i+1}$$

- Discretization Time: 4th oriderRunge-Kutta method $\Delta t = 5.0 \times 10^{-5}$ s

- Lumped parameters

Te values of C,R, and L are varied with an age and taken from references*.

*N. Stergiopulus, et al. Journal of Biomechanics 25,1477-1488 (1992) K. H. Parker et.al, Journal of Biomechanics 37, 457-470 (2004) F.Y. Liang et al. Journal of Biomechanics 42, 692-704 (2009)

- ν : dynamic viscosity
- p : pressure
- Q : flow rate
- A_0 : reference area
- A :area
- r_0 : reference diameter
- σ : Poison ratio
- *E* : Young Modulus
- h_0 : wall thickness
- C : compliance
- R : resistance
- *L* :inductance

全身循環を考慮したステント留置術の 術前・術後のシミュレーション

口 内頸動脈ステント手術

78歳,男性

左側内頸動脈(L.ICA)高度狭窄による左脳梗塞

ステント手術後, 左側中大脳動脈(L.MCA)において出血

シミュレーションに

よる術後の予測

1.Flow Rate & Pressure(MRI) Averaged FR(ml/min) Pre Post **Rt. ICA** (47) 51.1 231.8 40 Lt. ICA 76.4 186.9 56 154.9 BA 142.0 Rt. MCA 61 71.2 50.3 Lt. MCA (67) 23.1 59.3 Averaged **BP** 100.0 95.0 (mmHg)

2.MRA & CTA (Pre- & Post-)

≻手順1: 血管径・長さの計測 各血管の長さと両端の血管径を計測

▶手順2: 流量の推定
 ▶手順3: 末梢抵抗の調整
 ▶手順4: 狭窄率の推定(術前のみ)

術前・術後の比較

No.1	99.7 (<i>100)</i>
No.2	95.0(<i>95.0)</i>

◆脳内の流量(ml/s)と拍出量に対する割合

No.1(pre)	8.05ml/s	11.2%
No.2(Post)	9.35ml/s	12.7%

術前の算出データと術後の実測値との比較

□ 術前の状態で算出したパラメータを用い、L.ICAの狭窄をなしとして、計算 ◆ Resistance (mmHg•s•ml(-1))

4D医用画像からの血管壁の 材料特性のin vivo同定

prospectively ECG-gated single-heartbeat axial 320-MDCT

生体内の血管壁の材料特性の推定が可能になる

本研究に使用する 時系列CT画像データ(4D画像)の詳細

- 患者様
 - 60歳男性
- 撮影日
 - 2009/4/21
- 所見
 - 左側の内頸動脈に狭窄あり
 - 動脈硬化による石灰化が見られる
- 時系列CT画像
 - 40msec 間隔、20セットデータ
 - ・ ピクセル数 512 x 512 x 640
 - 解像度 0.234 x 0.234 x 0.5 mm
- 撮影機器
 - Aquilion ONE(320列面検出器 搭載)
- 撮影モード
 - ダイナミックボリュームスキャン
 アキシャルスキャン
 - Retrospective –ECG-gating 法

藤田保健衛生大学医学部脳神経外科 早川基治先生提供 -200 ct image 139/640 : range -200 1000 preprocess : 512 512 683 : 0.234 (input-voxel : 512 512 640 : 0.234 (

4D画像に対する血管壁面のトラッキング于法

血管壁のひずみの計測結果

ヤング率・圧力弾性係数の計測結果

血管分岐位置から、約1.5cm下を計測 血管壁の厚さは、CT画像から座標点を取得して計測

	radius_min (mm)	raius_max (mm)	strain	Thickness (mm)	ΔP (mmHg)	Young率 (kPa)	圧力弾性 係数(kPa)
右頸動脈	2.62	2.84	0.082	1.2	53.3	209	86
左頸動脈(狭窄側)	3.61	3.80	0.052	1.9	53.3	268	137

TABLE 5. Pressure-Strain Elastic Modulus and Young'sElastic Modulus of Participants in Atherosclerosis Riskin Communities Study

Age	Pressur	e-strain	Young's	
yroup yr)	F	М	F	М
5-49	105±39	116±39	701 ± 324	771±309
0-54	127 ± 52	127 ± 49	825±387	817±375
5-59	142 ± 55	144±61	868±409	882±448
0-64	163±65	165±79	965±491	983±557

Ward A. Riley, et al. "Ultrasonic Measurement of the Elastic Modulus of the Common Carotid Artery", Stroke 23, 952-956 (1992).

狭窄側で、ヤング率、圧力弾性係数が共に大きく出ている。

ヤング率

 $E_y = \frac{\Delta P R_{\min} R_{\max}}{W_t \, \Delta R}$

ATHEROSCLEROSIS

COMMUNITIES STU

血管壁の厚さ

~0.7mm

脳動脈瘤について

• 中大脳動脈分岐部(59歳女性)

 □ 血管壁の弾性係数: 1MPa,
 □ 厚み:0.3mm
 □ 血管壁のPoisson比: 0.45
 □ 血液: Newton流体を仮定, 粘性係数4.0cP(Re = 80[~]400)

3次元:血流と血管壁の相互作用

 ∂X_i

ALE Finite Element Method

Fluid(incompressible blood flow) • Continuity equation $\frac{\partial u_i}{\partial u_i} = 0$

Domain Deformation

Navier-Stokes equation

W

 $S_{ij} =$

$$\rho^{f} \frac{\partial u_{i}}{\partial t} + \rho^{f} c_{j} \frac{\partial u_{i}}{\partial x_{j}} = \frac{\partial \sigma_{ij}}{\partial x_{j}}$$

nere
$$\sigma_{ij} = -p\delta_{ij} + u \left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{j}} \right)$$

Strong Coupling

Fluid Forces

Structure (arterial wall)

equilibrium equation

$$\rho_0^s \frac{d^2 v_i}{dt^2} = \frac{\partial (S_{ik} F_{jk}^4)}{\partial x_j}$$

 v :displacement vector
 S: 2nd Piola-Kirchhoff tensor
 F^T : transpose of right Cauchy-Green deformation tensor

Large deformationHyper elastic model

Material Model: High order Mooney-Rivlin model

 ∂X_i

$$W = c_1(I_c - 3) + c_2(II_c - 3) + c_3(I_c - 3)^2$$

+ $c_4(I_c - 3)(II_c - 3) + c_5(II_c - 3)^2 + c_6(I_c - 3)$
+ $c_7(I_c - 3)^2(II_c - 3) + c_8(I_c - 3)(II_c - 3)^2$
+ $c_9(II_c - 3)^3$

 ∂X

$$C_1 = 1.7 \times 10^5 \ C_2 = 0.0 \qquad C_3 = 1.0 \times 10^4 C_4 = 0.0 \qquad C_5 = 1.0 \times 10^5 \ C_6 = 1.0 \times 10^6 C_7 = 0.0 \qquad C_8 = 0.0 \qquad C_9 = 0.0$$

<u>3次元FSI+10-0Dの末梢血管モデル</u>

principal strain at the peak of systole:

Maximum strain of value 1.2 % near the neck area

Outlet A

Flow_rate[m3/sec]

- mean flow-rate = $2.75e-07 \text{ m}^3/\text{sec} (32\%)$
- systole pressure = 137 mmHg

Outlet **B**:

- mean flow-rate = $5.96e-07 \text{ m}^3/\text{sec} (68\%)$
- systole pressure = 119 mmHg

33

around the breb

動脈硬化症における生理過程のモデル化

解析対象(症例②),解析条件

解析対象

- 66歳男性の左右総頸動脈分岐部
- 右内頸動脈分岐部に狭窄・潰瘍
- CT画像(160枚)より血管形状を
 再構築
- 解析格子(6面体非構造格子)
 - 要素数:244,944(左), 295,168 (右)
 - 節点数:254,520(左), 308,988 (右)
- 解析条件
 - 流入:拍動流入条件
 - 流出:マルチスケール境界条件
 - その他の条件は症例①と共通

物質輸送解析のモデル化

多層構造を持つ血管壁に対しマルチレイヤーモデルを採用

解析モデル概念図

$$J_v = L_p(\Delta p - \sigma_a \Delta \pi)$$

 $J_s = P\Delta c + (1 - \sigma_f) \frac{\Delta c}{\ln(c_l/c_w)}$

- 内膜直下での濃度分布(流入境界の濃度 C_0 で規格化)

右内頸動脈の狭窄部は濃度が低く,潰瘍部のみ濃度がやや高い →再度粥腫が形成され,狭窄が進行する可能性

形状計測

	左内頸動脈(手術適応)		右内頸動脈	
	2009年10月	2013年3月	2009年10月	2013年3月
形状	E	É	6	5
奥行き	5.24mm	-	1.76mm	1.91mm
開口の直径	2.84mm	-	3.09mm	3.04mm

シミュレーション結果

シミュレーション結果

動脈瘤形状の計測

	左内頸動脈(手術適応)		右内頸動脈(経過観察)	
	2009年10月	2013年3月	2009年10月	2013年3月
形状			In 1 92 101 93 00 04.7 51.9	Registered and the second
奥行き	5.24mm		1.76mm	1.91mm
間口の直径	2.84mm		3.09mm	3.04mm

形状計測

	左内頸動脈(手術適応)		右內頸動脈	
	2009年10月	2013年3月	2009年10月	2013年3月
形状	E.	E,	le	5
奥行き	5.24mm	-	1.76mm	1.91mm
間口の直径	2.84mm	2 -	3.09mm	3.04mm

左内頸動脈(手術適応)

左内頸動脈(手術適応)

WSS=Wall Shear Stress 壁面せん断応力₄₉

左内頸動脈(手術適応)

まとめと今後の予定

- 血管形状のパラメータ化
- 全身循環を考慮した血流シミュレーションの 実現
- 流体構造連成解析や物質輸送などの連成 解析の実現
- 【今後の予定】
- 臨床データとの検証
- PETなど他のモダリティからのデータ抽出

 他のモダリティを導入し、CTでは得られない データをシミュレーションにフィードバックす る手法の検討

データの可視化 による診断

高度な情報の提供による安全・安心な医療に貢献

ご清聴ありがとうございました。